

Axial Turbine Pump

Chemical Processing — Cooling Systems
ARC 855 and 858 Coating
Case Study 035

Challenge

Issue

Concrete encased pump could not be removed for repair. Extensive cavitation and pitting corrosion reduced pump flow performance impacting plant efficiency.

Goals

- Repair in place with solution that provides long term protection at 50% of previous repair cost
- Extend MTBR to >10 years

Root Cause

A combination of cavitation and pitting corrosion attacked the pump's cast iron bell housing. Tolerances went out-of-spec due to metal loss of .750" (18 mm). Empirical data indicated pending catastrophic failure lower bell housing.

Three pumps were experiencing this failure

Solution

Preparation

- Decontaminate surfaces
- Grit blast to Sa 2.5 with 3 mils (75 μm) angular profile

Application

- Apply ARC 858 to zones of pitting corrosion and cavitation
- 2. Apply ARC 855 in 2 coats to total DFT of 30-40 mils (.75-1 mm)

Cavitation and erosion of bell housing

Results

Client Reported

- Pumps have performed to expectations for 10+ years
- Each pump required 3 days to complete repairs

Client Reported Savings

Off site coating repairs (per pump): \$15.0K

Onsite ARC repairs (per pump): -\$ 2.7K

Total savings per pump: \$12.3K

Total savings based on 3 pumps: \$36.9K

\$=USD

Damaged area repaired with ARC 858